YLVAC  專注于高真空薄膜沉積設備領域

半導體

半導體( semiconductor),指常溫下導電性能介于導體(conductor)與絕緣體(insulator)之間的材料。半導體在收音機、電視機以及測溫上有著廣泛的應用。如二極管就是采用半導體制作的器件。半導體是指一種導電性可受控制,范圍可從絕緣體導體之間的材料。無論從科技或是經濟發展的角度來看,半導體的重要性都是非常巨大的。今日大部分的電子產品,如計算機、移動電話或是數字錄音機當中的核心單元都和半導體有著極為密切的關連。常見的半導體材料有硅、、砷化鎵等,而硅更是各種半導體材料中,在商業應用上最具有影響力的一種。

基本信息

  • 中文名稱

    半導體

  • 外文名稱

    semiconductor

  • 應用

    收音機、電視機以及測溫

  • 物質形式

    氣體、等離子體等

折疊編輯本段基本簡介

 半導體(semiconductor),指常溫下導電性能介于導體(conductor)與絕緣體(insulator)之間的材料。半導體在收音機、電視機以及測溫上有著廣泛的應用。

折疊編輯本段無線-潛力大

由于智能型手機消費者需求的增加,無線市場目前是半導體應用中,成長擴大速度最快的一個領域。隨著智能型手機需求的增加,而朝向無線基地臺的普及及網路基本設備的擴展發展。

Databeans在該報告中指出,通訊應用的各部門均分成無線市場與有線市場兩大類。分類為「無線」的產品包含行動電話(功能型手機,智能型手機)、無線基本設備(行動電話基地臺等)、短距離無線(802.11、藍牙,ZigBee,NFC)、及其他無線(無線電芯片等)部門。將無線市場視為單一部門來看,則該市場規模在半導體領域上,是僅次于計算機市場的第二大市場。2012年預計全球市場的銷售額將比前一年增加6%,達到約755億美金。這是約占半導體全球市場的25%市占率的水準。更進一步來看,無線市場是半導體消費整體市場中成長率最高的部門,預計接下來的五年間,成長率將大于整體市場的成長率。

折疊編輯本段主要特點

半導體五大特性∶摻雜性,熱敏性,光敏性,負電阻率溫度特性,整流特性。

★在形成晶體結構的半導體中,人為地摻入特定的雜質元素,導電性能具有可控性。

★在光照和熱輻射條件下,其導電性有明顯的變化。

晶格:晶體中的原子在空間形成排列整齊的點陣,稱為晶格。

共價鍵結構:相鄰的兩個原子的一對最外層電子(即價電子)不但各自圍繞自身所屬的原子核運動,而且出現在相鄰原子所屬的軌道上,成為共用電子,構成共價鍵。

電子-模型圖電子-模型圖自由電子的形成:在常溫下,少數的價電子由于熱運動獲得足夠的能量,掙脫共價鍵的束縛變成為自由電子。

空穴:價電子掙脫共價鍵的束縛變成為自由電子而留下一個空位置稱空穴。

電子電流:在外加電場的作用下,自由電子產生定向移動,形成電子電流。

空穴電流:價電子按一定的方向依次填補空穴(即空穴也產生定向移動),形成空穴電流。

本征半導體的電流:電子電流+空穴電流。自由電子和空穴所帶電荷極性不同,它們運動方向相反。

載流子:運載電荷的粒子稱為載流子。

導體電的特點:導體導電只有一種載流子,即自由電子導電。

本征半導體電的特點:本征半導體有兩種載流子,即自由電子和空穴均參與導電。

本征激發:半導體在熱激發下產生自由電子和空穴的現象稱為本征激發。

復合:自由電子在運動的過程中如果與空穴相遇就會填補空穴,使兩者同時消失,這種現象稱為復合。

動態平衡:在一定的溫度下,本征激發所產生的自由電子與空穴對,與復合的自由電子與空穴對數目相等,達到動態平衡。

載流子的濃度與溫度的關系:溫度一定,本征半導體中載流子的濃度是一定的,并且自由電子與空穴的濃度相等。當溫度升高時,熱運動加劇,掙脫共價鍵束縛的自由電子增多,空穴也隨之增多(即載流子的濃度升高),導電性能增強;當溫度降低,則載流子的濃度降低,導電性能變差。

結論:本征半導體的導電性能與溫度有關。半導體材料性能對溫度的敏感性,可制作熱敏和光敏器件,又造成半導體器件溫度穩定性差的原因。

雜質半導體:通過擴散工藝,在本征半導體中摻入少量合適的雜質元素,可得到雜質半導體。

P型半導體:在純凈的硅晶體中摻入三價元素(如硼),使之取代晶格中硅原子的位置,就形成了P型半導體。

多數載流子:P型半導體中,空穴的濃度大于自由電子的濃度,稱為多數載流子,簡稱多子。

少數載流子:P型半導體中,自由電子為少數載流子,簡稱少子。

受主原子:雜質原子中的空位吸收電子,稱受主原子。

P型半導體的導電特性:它是靠空穴導電,摻入的雜質越多,多子(空穴)的濃度就越高,導電性能也就越強。

N型半導體:在純凈的硅晶體中摻入五價元素(如磷),使之取代晶格中硅原子的位置,形成N型半導體。

多子:N型半導體中,多子為自由電子。

少子:N型半導體中,少子為空穴。

施子原子:雜質原子可以提供電子,稱施子原子。

N型半導體的導電特性:摻入的雜質越多,多子(自由電子)的濃度就越高,導電性能也就越強。

結論:

多子的濃度決定于雜質濃度。

少子的濃度決定于溫度。

PN結的形成:將P型半導體與N型半導體制作在同一塊硅片上, 在它們的交界面就形成PN結。

PN結的形成過程:如圖所示,將P型半導體與N型半導體制作在同一塊硅片上,在無外電場和其它激發作用下,參與擴散運動的多子數目等于參與漂移運動的少子數目,從而達到動態平衡,形成PN結。

擴散運動:物質總是從濃度高的地方向濃度低的地方運動,這種由于濃度差而產生的運動稱為擴散運動。

空間電荷區:擴散到P區的自由電子與空穴復合,而擴散到N區的空穴與自由電子復合,所以在交界面附近多子的濃度下降,P區出現負離子區,N區出現正離子區,它們是不能移動,稱為空間電荷區。

電場形成:空間電荷區形成內電場。

空間電荷加寬,內電場增強,其方向由N區指向P區,阻止擴散運動的進行。

漂移運動:在電場力作用下,載流子的運動稱漂移運動。

電位差:空間電荷區具有一定的寬度,形成電位差Uho,電流為零。

耗盡層:絕大部分空間電荷區內自由電子和空穴的數目都非常少,在分析PN結時常忽略載流子的作用,而只考慮離子區的電荷,稱耗盡層。

PN結的特點:具有單向導電性。

折疊編輯本段基本術語

半導體中的雜質對電阻率的影響非常大。半導體中摻入微量雜質時,雜質原子附近的周期勢場受到干擾并形成附加的束縛狀態,在禁帶中產加的雜質能級。例如四價元素鍺或硅晶體中摻入五價元素磷、砷、銻等雜質原子時,雜質原子作為晶格的一分子,其五個價電子中有四個與周圍的鍺(或硅)原子形成共價結合,多余的一個電子被束縛于雜質原子附近,產生類氫能級。雜質能級位于禁帶上方靠近導帶底附近。雜質能級上的電子很易激發到導帶成為電子載流子。這種能提供電子載流子的雜質稱為施主,相應能級稱為施主能級。施主能級上的電子躍遷到導帶所需能量比從價帶激發到導帶所需能量小得多(圖2)。在鍺或硅晶體中摻入微量三價元素硼、鋁、鎵等雜質原子時,雜質原子與周圍四個鍺(或硅)原子形成共價結合時尚缺少一個電子,因而存在一個空位,與此空位相應的能量狀態就是雜質能級,通常位于禁帶下方靠近價帶處。價帶中的電子很易激發到雜質能級上填補這個空位,使雜質原子成為負離子。價帶中由于缺少一個電子而形成一個空穴載流子。這種能提供空穴的雜質稱為受主雜質。存在受主雜質時,在價帶中形成一個空穴載流子所需能 量比本征半導體情形要小得多。半導體摻雜后其電阻率大大下降。加熱或光照產生的熱激發或光激發都會使自由載流子數增加而導致電阻率減小,半導體熱敏電阻光敏電阻就是根據此原理制成的。對摻入施主雜質的半導體,導電載流子主要是導帶中的電子,屬電子型導電,稱N型半導體(圖3)。摻入受主雜質的半導體屬空穴型導電,稱P型半導體。半導體在任何溫度下都能產生電子-空穴對,故N型半導體中可存在少量導電空穴,P型半導體中可存在少量導電電子,它們均稱為少數載流子。在半導體器件的各種效應中,少數載流子常扮演重要角色。

折疊PN結

P型半導體與N型半導體相互接觸時,其交界區域稱為PN結。P區中的自由空穴和N區中的自由電子要向對方區域擴散,造成正負電荷在PN 結兩側的積累,形成電偶極層(圖4 )。電偶極層中的電場方向正好阻止擴散的進行。當由于載流子數密度不等引起的擴散作用與電偶層中電場的作用達到平衡時,P區和N區之間形成一定的電勢差,稱為接觸電勢差。由于P 區中的空穴向N區擴散后與N區中的電子復合,而N區中的電子向P區擴散后與P 區中的空穴復合,這使電偶極層中自由載流子數減少而形成高阻層,故電偶極層也叫阻擋層,阻擋層的電阻值往往是組成PN結的半導體的原有阻值的幾十倍乃至幾百倍。

PN結具有單向導電性,半導體整流管就是利用PN結的這一特性制成的。PN結的另一重要性質是受到光照后能產生電動勢,稱光生伏打效應,可利用來制造光電池。半導體三極管、可控硅、PN結光敏器件和發光二極管等半導體器件均利用了PN結的特性。

PN結的單向導電性

P端接電源的正極,N端接電源的負極稱之為PN結正偏。此時PN結如同一個開關合上,呈現很小的電阻,稱之為導通狀態。

P端接電源的負極,N端接電源的正極稱之為PN結反偏,此時PN結處于截止狀態,如同開關打開。結電阻很大,當反向電壓加大到一定程度,PN結會發生擊穿而損壞。

折疊半導體摻雜

半導體之所以能廣泛應用在今日的數位世界中,憑借的就是其能借由在其晶格中植入雜質改變其電性,這個過程稱之為摻雜(doping)。摻雜進入本質半導體(intrinsic semiconductor)的雜質濃度與極性皆會對半導體的導電特性產生很大的影響。而摻雜過的半導體則稱為外質半導體(extrinsic semiconductor)。

折疊半導體摻雜物

哪種材料適合作為某種半導體材料的摻雜物(dopant)需視兩者的原子特性而定。一般而言,摻雜物依照其帶給被摻雜材料的電荷正負被區分為施主(donor)與受主(acceptor)。施主原子帶來的價電子(valence electrons)大多會與被摻雜的材料原子產生共價鍵,進而被束縛。而沒有和被摻雜材料原子產生共價鍵的電子則會被施主原子微弱地束縛住,這個電子又稱為施主電子。和本質半導體的價電子比起來,施主電子躍遷至傳導帶所需的能量較低,比較容易在半導體材料的晶格中移動,產生電流。雖然施主電子獲得能量會躍遷至傳導帶,但并不會和本質半導體一樣留下一個電洞,施主原子在失去了電子后只會固定在半導體材料的晶格中。因此這種因為摻雜而獲得多余電子提供傳導的半導體稱為n型半導體(n-type semiconductor),n代表帶負電荷的電子。

和施主相對的,受主原子進入半導體晶格后,因為其價電子數目比半導體原子的價電子數量少,等效上會帶來一個的空位,這個多出的空位即可視為電洞。受主摻雜后的半導體稱為p型半導體(p-type semiconductor),p代表帶正電荷的電洞。

以一個硅的本質半導體來說明摻雜的影響。硅有四個價電子,常用于硅的摻雜物有三價與五價的元素。當只有三個價電子的三價元素如硼(boron)摻雜至硅半導體中時,硼扮演的即是受主的角色,摻雜了硼的硅半導體就是p型半導體。反過來說,如果五價元素如磷(phosphorus)摻雜至硅半導體時,磷扮演施主的角色,摻雜磷的硅半導體成為n型半導體。

一個半導體材料有可能先后摻雜施主與受主,而如何決定此外質半導體為n型或p型必須視摻雜后的半導體中,受主帶來的電洞濃度較高或是施主帶來的電子濃度較高,亦即何者為此外質半導體的“多數載子”(majority carrier)。和多數載子相對的是少數載子(minority carrier)。對于半導體元件的操作原理分析而言,少數載子在半導體中的行為有著非常重要的地位。

折疊半導體載子濃度

摻雜物濃度對于半導體最直接的影響在于其載子濃度。在熱平衡的狀態下,一個未經摻雜的本質半導體,電子與電洞的濃度相等,如下列公式所示:

n= p= n其中n是半導體內的電子濃度、p則是半導體的電洞濃度,n則是本質半導體的載子濃度。n會隨著材料或溫度的不同而改變。對于室溫下的硅而言,n大約是1×10 cm。

通常摻雜濃度越高,半導體的導電性就會變得越好,原因是能進入傳導帶的電子數量會隨著摻雜濃度提高而增加。摻雜濃度非常高的半導體會因為導電性接近金屬而被廣泛應用在今日的集成電路制程來取代部份金屬。高摻雜濃度通常會在n或是p后面附加一上標的“+”號,例如n代表摻雜濃度非常高的n型半導體,反之例如p則代表輕摻雜的p型半導體。需要特別說明的是即使摻雜濃度已經高到讓半導體“退化”(degenerate)為導體,摻雜物的濃度和原本的半導體原子濃度比起來還是差距非常大。以一個有晶格結構的硅本質半導體而言,原子濃度大約是5×10 cm,而一般集成電路制程里的摻雜濃度約在10 cm至10 cm之間。摻雜濃度在10 cm以上的半導體在室溫下通常就會被視為是一個“簡并半導體”(degenerated semiconductor)。重摻雜的半導體中,摻雜物和半導體原子的濃度比約是千分之一,而輕摻雜則可能會到十億分之一的比例。在半導體制程中,摻雜濃度都會依照所制造出元件的需求量身打造,以合于使用者的需求。

折疊摻雜對結構的影響

摻雜之后的半導體能帶會有所改變。依照摻雜物的不同,本質半導體的能隙之間會出現不同的能階。施主原子會在靠近傳導帶的地方產生一個新的能階,而受主原子則是在靠近價帶的地方產生新的能階。假設摻雜原子進入硅,則因為硼的能階到硅的價帶之間僅有0.045電子伏特,遠小于硅本身的能隙1.12電子伏特,所以在室溫下就可以使摻雜到硅里的硼原子完全解離化(ionize)。

摻雜物對于能帶結構的另一個重大影響是改變了費米能階的位置。在熱平衡的狀態下費米能階依然會保持定值,這個特性會引出很多其他有用的電特性。舉例來說,一個p-n接面(p-n junction)的能帶會彎折,起因是原本p型半導體和n型半導體的費米能階位置各不相同,但是形成p-n接面后其費米能階必須保持在同樣的高度,造成無論是p型或是n型半導體的傳導帶或價帶都會被彎曲以配合接面處的能帶差異。

上述的效應可以用能帶圖(band diagram)來解釋,。在能帶圖里橫軸代表位置,縱軸則是能量。圖中也有費米能階,半導體的本質費米能階(intrinsic Fermi level)通常以E來表示。在解釋半導體元件的行為時,能帶圖是非常有用的工具。

折疊半導體材料的制造

為了滿足量產上的需求,半導體的電性必須是可預測并且穩定的,因此包括摻雜物的純度以及半導體晶格結構的品質都必須嚴格要求。常見的品質問題包括晶格的錯位(dislocation)、雙晶面(twins),或是堆棧錯誤(stacking fault)都會影響半導體材料的特性。對于一個半導體元件而言,材料晶格的缺陷通常是影響元件性能的主因。

目前用來成長高純度單晶半導體材料最常見的方法稱為裘可拉斯基制程(Czochralski process)。這種制程將一個單晶的晶種(seed)放入溶解的同材質液體中,再以旋轉的方式緩緩向上拉起。在晶種被拉起時,溶質將會沿著固體和液體的接口固化,而旋轉則可讓溶質的溫度均勻。

折疊分類

半導體的分類,按照其制造技術可以分為:集成電路器件,分立器件、光電半導體、邏輯IC、模擬IC、儲存器等大類,一般來說這些還會被分成小類。此外還有以應用領域、設計方法等進行分類,雖然不常用,但還是按照IC、LSI、VLSI(超大LSI)及其規模進行分類的方法。此外,還有按照其所處理的信號,可以分成模擬、數字、模擬數字混成及功能進行分類的方法。

折疊編輯本段發展歷程

半導體的發現實際上可以追溯到很久以前,

1833年,英國巴拉迪最先發現硫化銀的電阻隨著溫度的變化情況不同于一般金屬,一般情況下,金屬的電阻隨溫度升高而增加,但巴拉迪發現硫化銀材料的電阻是隨著溫度的上升而降低。這是半導體現象的首次發現。

不久, 1839年法國的貝克萊爾發現半導體和電解質接觸形成的結,在光照下會產生一個電壓,這就是后來人們熟知的光生伏特效應,這是被發現的半導體的第二個特征。

1873年,英國的史密斯發現硒晶體材料在光照下電導增加的光電導效應,這是半導體又一個特有的性質。半導體的這四個效應,(jianxia霍爾效應的余績──四個伴生效應的發現)雖在1880年以前就先后被發現了,但半導體這個名詞大概到1911年才被考尼白格和維斯首次使用。而總結出半導體的這四個特性一直到1947年12月才由貝爾實驗室完成。

1874年,德國的布勞恩觀察到某些硫化物的電導與所加電場的方向有關,即它的導電有方向性,在它兩端加一個正向電壓,它是導通的;如果把電壓極性反過來,它就不導電,這就是半導體的整流效應,也是半導體所特有的第三種特性。同年,舒斯特又發現了銅與氧化銅的整流效應。

很多人會疑問,為什么半導體被認可需要這么多年呢?主要原因是當時的材料不純。沒有好的材料,很多與材料相關的問題就難以說清楚。如果感興趣可以讀一下Robert W.Cahn的The coming of Materials Science中關于半導體的一些說明。

折疊編輯本段其他資料

半導體電阻率介于金屬和絕緣體之間并有負的電阻溫度系數的物質稱為半導體: 室溫時電阻率約在1mΩ·cm~1GΩ·cm之間(上限按謝嘉奎《電子線路》取值,還有取其1/10或10倍的;因上角標暫不可用,暫用當前方法描述),溫度升高時電阻率則減小。半導體材料很多,按化學成分可分為元素半導體和化合物半導體兩大類。鍺和硅是最常用的元素半導體;化合物半導體包括Ⅲ-Ⅴ族化合物(砷化鎵、磷化鎵等)、Ⅱ-Ⅵ族化合物( 硫化鎘、硫化鋅等)、氧化物(錳、鉻、鐵、銅的氧化物),以及由Ⅲ-Ⅴ族化合物和Ⅱ-Ⅵ族化合物組成的固溶體(鎵鋁砷、鎵砷磷等)。除上述晶態半導體外,還有非晶態的玻璃半導體、有機半導體等。

本征半導體:不含雜質且無晶格缺陷的半導體稱為本征半導體。在極低溫度下,半導體的價帶是滿帶(見能帶理論),受到熱激發后,價帶中的部分電子會越過禁帶進入能量較高的空帶,空帶中存在電子后成為導帶,價帶中缺少一個電子后形成 一個帶正電的空位,稱為空穴。導帶中的電子和價帶中的空穴合稱電子- 空穴對,均能自由移動,即載流子,它們在外電場作用下產生定向運動而形成宏觀電流,分別稱為電子導電和空穴導電。這種由于電子-空穴對的產生而形成的混合型導電稱為本征導電。導帶中的電子會落入空穴,電子-空穴對消失,稱為復合。復合時釋放出的能量變成電磁輻射(發光)或晶格的熱振動能量(發熱)。在一定溫度下,電子- 空穴對的產生和復合同時存在并達到動態平衡,此時半導體具有一定的載流子密度,從而具有一定的電阻率。溫度升高時,將產生更多的電子- 空穴對,載流子密度增加,電阻率減小。無晶格缺陷的純凈半導體的電阻率較大,實際應用不多。

折疊多樣性

物質存在的形式多種多樣,固體、液體、氣體、等離子體等等。我們通常把導電性差或不好的材料,如金剛石、人工晶體、琥珀、陶瓷等等,稱為絕緣體。而把導電性比較好的金屬如金、銀、銅、鐵、錫、鋁等稱為導體??梢院唵蔚陌呀橛趯w和絕緣體之間的材料稱為半導體。與導體和絕緣體相比,半導體材料的發現是最晚的,直到20世紀30年代,當材料的提純技術改進以后,半導體的存在才真正被學術界認可。

折疊伏安特性曲線

伏安特性曲線:加在PN結兩端的電壓和流過二極管的電流之間的關系曲線稱為伏安特性曲線。如圖所示:

 正向特性:u>0的部分稱為正向特性。

反向特性:u<0的部分稱為反向特性。

反向擊穿:當反向電壓超過一定數值U(BR)后,反向電流急劇增加,稱之反向擊穿。

勢壘電容:耗盡層寬窄變化所等效的電容稱為勢壘電容Cb。

變容二極管:當PN結加反向電壓時,Cb明顯隨u的變化而變化,而制成各種變容二極管。如下圖所示。

 平衡少子:PN結處于平衡狀態時的少子稱為平衡少子。

非平衡少子:PN結處于正向偏置時,從P區擴散到N區的空穴和從N區擴散到P區的自由電子均稱為非平衡少子。

擴散電容:擴散區內電荷的積累和釋放過程與電容器充、放電過程相同,這種電容效應稱為Cd。

結電容:勢壘電容與擴散電容之和為PN結的結電容Cj。

折疊編輯本段應用領域

最早的實用“半導體”是「電晶體(Transistor)/ 二極體(Diode)」。

一、在無線電收音機(Radio)及電視機(Television)中,作為“訊號放大器/整流器”用。

二、近來發展「太陽能(Solar Power)」,也用在「光電池(Solar Cell)」中。

三、半導體可以用來測量溫度,測溫范圍可以達到生產、生活、醫療衛生、科研教學等應用的70%的領域,有較高的準確度和穩定性,分辨率可達0.1℃,甚至達到0.01℃也不是不可能,線性度0.2%,測溫范圍-100~+300℃,是性價比極高的一種測溫元件。

折疊編輯本段命名

折疊中國半導體器件型號命名方法

半導體器件型號由五部分(場效應器件、半導體特殊器件、復合管、PIN型管、激光器件的型號命名只有第三、四、五部分)組成。五個部分意義如下:

第一部分:用數字表示半導體器件有效電極數目。2-二極管、3-三極管

第二部分:用漢語拼音字母表示半導體器件的材料和極性。表示二極管時:A-N型鍺材料、B-P型鍺材料、C-N型硅材料、D-P型硅材料。表示三極管時:A-PNP型鍺材料、B-NPN型鍺材料、C-PNP型硅材料、D-NPN型硅材料。

第三部分:用漢語拼音字母表示半導體器件的內型。P-普通管、V-微波管、W-穩壓管、C-參量管、Z-整流管、L-整流堆、S-隧道管、N-阻尼管、U-光電器件、K-開關管、X-低頻小功率管(F<3MHz,Pc<1W)、G-高頻小功率管(f>3MHz,Pc<1W)、D-低頻大功率管(f<3MHz,Pc>1W)、A-高頻大功率管(f>3MHz,Pc>1W)、T-半導體晶閘管(可控整流器)、Y-體效應器件、B-雪崩管、J-階躍恢復管、CS-場效應管、BT-半導體特殊器件、FH-復合管、PIN-PIN型管、JG-激光器件。

第四部分:用數字表示序號

第五部分:用漢語拼音字母表示規格號

例如:3DG18表示NPN型硅材料高頻三極管

折疊日本半導體分立器件型號命名方法

日本生產的半導體分立器件,由五至七部分組成。通常只用到前五個部分,其各部分的符號意義如下:

第一部分:用數字表示器件有效電極數目或類型。0-光電(即光敏)二極管三極管及上述器件的組合管、1-二極管、2三極或具有兩個pn結的其他器件、3-具有四個有效電極或具有三個pn結的其他器件、┄┄依此類推。

第二部分:日本電子工業協會JEIA注冊標志。S-表示已在日本電子工業協會JEIA注冊登記的半導體分立器件。

第三部分:用字母表示器件使用材料極性和類型。A-PNP型高頻管、B-PNP型低頻管、C-NPN型高頻管、D-NPN型低頻管、F-P控制極可控硅、G-N控制極可控硅、H-N基極單結晶體管、J-P溝道場效應管、K-N 溝道場效應管、M-雙向可控硅。

第四部分:用數字表示在日本電子工業協會JEIA登記的順序號。兩位以上的整數-從“11”開始,表示在日本電子工業協會JEIA登記的順序號;不同公司的性能相同的器件可以使用同一順序號;數字越大,越是近期產品。

第五部分:用字母表示同一型號的改進型產品標志。A、B、C、D、E、F表示這一器件是原型號產品的改進產品。

折疊美國半導體分立器件型號命名方法

美國晶體管或其他半導體器件的命名法較混亂。美國電子工業協會半導體分立器件命名方法如下:

第一部分:用符號表示器件用途的類型。JAN-軍級、JANTX-特軍級、JANTXV-超特軍級、JANS-宇航級、(無)-非軍用品。

第二部分:用數字表示pn結數目。1-二極管、2=三極管、3-三個pn結器件、n-n個pn結器件。

第三部分:美國電子工業協會(EIA)注冊標志。N-該器件已在美國電子工業協會(EIA)注冊登記。

第四部分:美國電子工業協會登記順序號。多位數字-該器件在美國電子工業協會登記的順序號。

第五部分:用字母表示器件分檔。A、B、C、D、┄┄-同一型號器件的不同檔別。如:JAN2N3251A表示PNP硅高頻小功率開關三極管,JAN-軍級、2-三極管、N-EIA 注冊標志、3251-EIA登記順序號、A-2N3251A檔。

折疊國際電子聯合會半導體型號命名方法

德國、法國、意大利、荷蘭、比利時等歐洲國家以及匈牙利、羅馬尼亞、南斯拉夫、波蘭等東歐國家,大都采用國際電子聯合會半導體分立器件型號命名方法。這種命名方法由四個基本部分組成,各部分的符號及意義如下:

第一部分:用字母表示器件使用的材料。A-器件使用材料的禁帶寬度Eg=0.6~1.0eV 如鍺、B-器件使用材料的Eg=1.0~1.3eV 如硅、C-器件使用材料的Eg>1.3eV 如砷化鎵、D-器件使用材料的Eg<0.6eV 如銻化銦、E-器件使用復合材料及光電池使用的材料

第二部分:用字母表示器件的類型及主要特征。A-檢波開關混頻二極管、B-變容二極管、C-低頻小功率三極管、D-低頻大功率三極管、E-隧道二極管、F-高頻小功率三極管、G-復合器件及其他器件、H-磁敏二極管、K-開放磁路中的霍爾元件、L-高頻大功率三極管、M-封閉磁路中的霍爾元件、P-光敏器件、Q-發光器件、R-小功率晶閘管、S-小功率開關管、T-大功率晶閘管、U-大功率開關管、X-倍增二極管、Y-整流二極管、Z-穩壓二極管。

第三部分:用數字或字母加數字表示登記號。三位數字-代表通用半導體器件的登記序號、一個字母加二位數字-表示專用半導體器件的登記序號。

第四部分:用字母對同一類型號器件進行分檔。A、B、C、D、E┄┄-表示同一型號的器件按某一參數進行分檔的標志。

除四個基本部分外,有時還加后綴,以區別特性或進一步分類。常見后綴如下:

1.穩壓二極管型號的后綴。其后綴的第一部分是一個字母,表示穩定電壓值的容許誤差范圍,字母A、B、C、D、E分別表示容許誤差為±1%、±2%、±5%、±10%、±15%;其后綴第二部分是數字,表示標稱穩定電壓的整數數值;后綴的第三部分是字母V,代表小數點,字母V之后的數字為穩壓管標稱穩定電壓的小數值。

2.整流二極管后綴是數字,表示器件的最大反向峰值耐壓值,單位是伏特。

3.晶閘管型號的后綴也是數字,通常標出最大反向峰值耐壓值和最大反向關斷電壓中數值較小的那個電壓值。

如:BDX51-表示NPN硅低頻大功率三極管,AF239S-表示PNP鍺高頻小功率三極管。

五、歐洲早期半導體分立器件型號命名法

折疊歐洲有些國家命名方法

第一部分:O-表示半導體器件

第二部分:A-二極管、C-三極管、AP-光電二極管、CP-光電三極管、AZ-穩壓管、RP-光電器件。

第三部分:多位數字-表示器件的登記序號。

第四部分:A、B、C┄┄-表示同一型號器件的變型產品。

折疊編輯本段未來發展

以GaN(氮化鎵)為代表的第三代半導體材料及器件的開發是新興半導體產業的核心和基礎,其研究開發呈現出日新月異的發展勢態。GaN基光電器件中,藍色發光二極管LED率先實現商品化生產 成功開發藍光LED和LD之后,科研方向轉移到GaN紫外光探測器上 GaN材料在微波功率方面也有相當大的應用市場。氮化鎵半導體開關被譽為半導體芯片設計上一個新的里程碑。美國佛羅里達大學的科學家已經開發出一種可用于制造新型電子開關的重要器件,這種電子開關可以提供平穩、無間斷電源。

今年是摩爾法則(Moore’slaw)問世50周年,這一法則的誕生是半導體技術發展史上的一個里程碑。

這50年里,摩爾法則成為了信息技術發展的指路明燈。計算機從神秘不可近的龐然大物變成多數人都不可或缺的工具,信息技術由實驗室進入無數個普通家庭,因特網將全世界聯系起來,多媒體視聽設備豐富著每個人的生活。這一法則決定了信息技術的變化在加速,產品的變化也越來越快。人們已看到,技術與產品的創新大致按照它的節奏,超前者多數成為先鋒,而落后者容易被淘汰。

這一切背后的動力都是半導體芯片。如果按照舊有方式將晶體管、電阻和電容分別安裝在電路板上,那么不僅個人電腦和移動通信不會出現,連基因組研究、計算機輔助設計和制造等新科技更不可能問世。有關專家指出,摩爾法則已不僅僅是針對芯片技術的法則;不久的將來,它有可能擴展到無線技術、光學技術、傳感器技術等領域,成為人們在未知領域探索和創新的指導思想。

毫無疑問,摩爾法則對整個世界意義深遠。不過,隨著晶體管電路逐漸接近性能極限,這一法則將會走到盡頭。摩爾法則何時失效?專家們對此眾說紛紜。早在1995年在芝加哥舉行信息技術國際研討會上,美國科學家和工程師杰克·基爾比表示,5納米處理器的出現或將終結摩爾法則。中國科學家和未來學家周海中在此次研討會上預言,由于納米技術的快速發展,30年后摩爾法則很可能就會失效。2012年,日裔美籍理論物理學家加來道雄在接受智囊網站采訪時稱,“在10年左右的時間內,我們將看到摩爾法則崩潰?!鼻安痪?,摩爾本人認為這一法則到2020年的時候就會黯然失色。一些專家指出,即使摩爾法則壽終正寢,信息技術前進的步伐也不會變慢。[1]


在線客服
 
 
 工作時間
周一至周五 :8:30-17:30
周六至周日 :9:00-17:00
 聯系方式
林經理:18912798445